Касательным напряжением в точке сечения. Напряженное состояние в точке. Главные площадки и главные напряжения. Эпюры касательных напряжений круглого сечения

Телефонная часть

Напряжение есть вектор и как всякий вектор может быть представлен нормальной (по отношению к площадке) и касательной составляющими (рис. 2.3). Нормальную составляющую вектора напряжений будем обозначать касательную . Экспериментальными исследованиями установлено, что влияние нормальных и касательных напряжений на прочность материала различно, и потому в дальнейшем окажется необходимым всегда раздельно рассматривать составляющие вектора напряжений.

Рис. 2.3. Нормальное и касательное напряжения в площадке

Рис. 2.4. Касательное напряжение при срезе болта

При растяжении болта (см. рис. 2.2) в поперечном сечении действует нормальное напряжение

При работе болта на срез (рис. 2.4) в сеченйи П должно возникать усилие, уравновешивающее усилие .

Из условий равновесия следует, что

В действительности последнее соотношение определяет некоторое среднее напряжение по сечению, которым иногда пользуются для приближенных оценок прочности. На рис. 2.4 показан вид болта после воздействия значительных усилий. Началось разрушение болта, и одна его половина сместилась относительно другой: произошла деформация сдвига или среза.

Примеры определения напряжений в элементах конструкций.

Разберем простейшие примеры, в которых предположение о равномерном распределении напряжений, можно считать практически приемлемым. В таких случаях величины напряжений определяются с помощью метода сечений из уравнений статики (уравнений равновесия).

Кручение тонкостенного круглого вала.

Тонкостенный круглый вал (труба) передает крутящий момент (например, от авиационного двигателя на воздушный винт). Требуется определить напряжения в поперечном сечении вала (рис. 2.5, а). Проведем плоскость сечения П перпендикулярно оси вала и рассмотрим равновесие отсеченной части (рис. 2.5, б).

Рис. 2.5. Кручение тонкостенного круглого вала

Из условия осевой симметрии, учитывая малую толщину стенки можно принять, что напряжения во всех точках поперечного сечения одинаковы.

Строго говоря, такое предположение справедливо только при очень малой толщине стенки, но в практических расчетах его используют, если толщина стенки

где - средний радиус сечения.

Внешние силы, приложенные к отсеченной части вала, сводятся только к крутящему моменту, и потому нормальные напряжения в поперечном сечении должны отсутствовать. Крутящий момент уравновешивается касательными напряжениями, момент которых равен

Из последнего соотношения находим касательное напряжение в сечении вала:

Напряжения в тонкостенном цилиндрическом сосуде (трубе).

В тонкостенном цилиндрическом сосуде действует давление (рис. 2.6, а).

Проведем сечение плоскостью П, перпендикулярной оси цилиндрической оболочки, и рассмотрим равновесие отсеченной части. Давление, действующее на крышку сосуда, создает усилив

Это усилие уравновешивается силами, возникающими в поперечном сечении оболочки, и интенсивность - указанных сил - напряжение - будет равна

Толщина оболочки 5 предполагается малой по сравнению со средним радиусом , напряжения считаются равномерно распределенными во всех точках поперечного сечения (рис. 2.6, б).

Однако на материал трубы действуют не только напряжения в продольном направлении, но и окружные (или кольцевые) напряжения в перпендикулярном направлении. Для их выявления выделим двумя сечениями кольцо длиной I (рис. 2.7), а затем проведем диаметральное сечение, отделяющее половину кольца.

На рис. 2.7, а показаны напряжения на поверхностях сечения. На внутреннюю поверхность трубы радиусом действует давление

Рис. 2.8. Трещина в цилиндрической оболочке при действии разрушающего внутреннего давления

Напряжением называется интенсивность действия внутренних сил в точке тела, то есть, напряжение - это внутреннее усилие, приходящееся на единицу площади. По своей природе напряжение - это , возникающая на внутренних поверхностях соприкасания частей тела. Напряжение, так же как и интенсивность внешней поверхностной нагрузки, выражается в единицах силы, отнесенных к единице площади:Па=Н/м 2 (МПа = 10 6 Н/м 2 , кгс/см 2 =98 066 Па ≈ 10 5 Па, тс/м 2 и т. д.).

Выделим небольшую площадку ∆A . Внутреннее усилие, действующее на нее, обозначим ∆\vec{R}. Полное среднее напряжение на этой площадке \vec{р} = ∆\vec{R}/∆A . Найдем предел этого отношения при ∆A \to 0 . Это и будет полным напряжение на данной площадке (точке) тела.

\textstyle \vec{p} = \lim_{\Delta A \to 0} {\Delta\vec{R}\over \Delta A}

Полное напряжение \vec p, как и равнодействующая внутренних сил, приложенных на элементарной площадке, является векторной величиной и может быть разложено на две составляющие: перпендикулярное к рассматриваемой площадке – нормальное напряжение σ n и касательное к площадке – касательное напряжение \tau_n. Здесь n – нормаль к выделенной площадке .

Касательное напряжение, в свою очередь, может быть разложено на две составляющие, параллельные координатным осям x, y , связанным с поперечным сечением – \tau_{nx}, \tau_{ny}. В названии касательного напряжения первый индекс указывает нормаль к площадке,второй индекс — направление касательного напряжения.

$$\vec{p} = \left[\matrix{\sigma _n \\ \tau _{nx} \\ \tau _{nx}} \right]$$

Отметим, что в дальнейшем будем иметь дело главным образом не с полным напряжением \vec p , а с его составляющими σ_x,\tau _{xy}, \tau _{xz} . В общем случае на площадке могут возникать два вида напряжений: нормальное σ и касательное τ .

Тензор напряжений

При анализе напряжений в окрестности рассматриваемой точки выделяется бесконечно малый объемный элемент (параллелепипед со сторонами dx, dy, dz ), по каждой грани которого действуют, в общем случае, три напряжения, например, для грани, перпендикулярной оси x (площадка x) – σ_x,\tau _{xy}, \tau _{xz}

Компоненты напряжений по трем перпендикулярным граням элемента образуют систему напряжений, описываемую специальной матрицей – тензором напряжений

$$ T _\sigma = \left[\matrix{
\sigma _x & \tau _{yx} & \tau _{zx} \\
\tau _{xy} & \sigma _y & \tau _{zy} \\ \tau _{xz} & \tau _{yz} & \sigma _z
}\right]$$

Здесь первый столбец представляет компоненты напряжений на площадках,
нормальных к оси x, второй и третий – к оси y и z соответственно.

При повороте осей координат, совпадающих с нормалями к граням выделенного
элемента, компоненты напряжений изменяются. Вращая выделенный элемент вокруг осей координат, можно найти такое положение элемента, при котором все касательные напряжения на гранях элемента равны нулю.

Площадка, на которой касательные напряжения равны нулю, называется главной площадкой .

Нормальное напряжение на главной площадке называется главным напряжением

Нормаль к главной площадке называется главной осью напряжений .

В каждой точке можно провести три взаимно-перпендикулярных главных площадки.

При повороте осей координат изменяются компоненты напряжений, но не меняется напряженно-деформированное состояние тела (НДС).

Внутренние усилия есть результат приведения к центру поперечного сечения внутренних сил, приложенных к элементарным площадкам. Напряжения – мера, характеризующая распределение внутренних сил по сечению.

Предположим, что нам известно напряжение в каждой элементарной площадке. Тогда можно записать:

Продольное усилие на площадке dA : dN = σ z dA
Поперечная сила вдоль оси х: dQ x = \tau {zx} dA
Поперечная сила вдоль оси y: dQ y = \tau {zy} dA
Элементарные моменты вокруг осей x,y,z: $$\begin{array}{lcr} dM _x = σ _z dA \cdot y \\ dM _y = σ _z dA \cdot x \\ dM _z = dM _k = \tau _{zy} dA \cdot x - \tau _{zx} dA \cdot y \end{array}$$

Выполнив интегрирование по площади поперечного сечения получим:

То есть, каждое внутренне усилие есть суммарный результат действия напряжений по всему поперечному сечению тела.

Пример 4.1. Определить нормальное и касательное напряжения в точке К прямоугольного сечения балки (6х14 см), если изгибающий момент в этом сечении М х =–40кНм=–40 кНсм., а поперечная сила равна 20 кН.

Решение. Момент инерции прямоугольного поперечного сечения относительноглавной центральной оси x .

J x = = =1372 см 4 . .

Ось у направим вниз. Координата точки К равна у к = –4см.

Нормальное напряжение в точке К будет равно

=116,6 МПа.

Касательное напряжение в точке К вычисляем по формуле Журавского.

Статический момент отсечённой части площади сечения равен

Ширина сечения на уровне К равна b(y)= 6см.

Определим касательное напряжение в точке К.

=2,4 МПа.

Пример 4.2. Определить наибольшее растягивающее нормальное и наибольшее касательное напряжения в балке круглого сечения, если в сечении М х = 80 кНм= 80 10 3 кНсм, Q= 60кН.

Диаметр сечения d=14 см.


Решение. Наибольшее растягивающее нормальное напряжение возникает в нижнем волокне растянутой зоны сечения, т.е. в волокне наиболее удалённом от нейтральной оси х , и определяется по формуле

Наибольшие касательные напряжения возникают в точках сечения на уровне нейтральной оси х , где все касательные напряжения параллельны поперечной силе, и их можно определять по формуле Журавского.

Площадь сечения равна А = = =153,56 см 2 .

Момент сопротивления сечения равен W x = = 269,26см 3 .

Определим значение растягивающего наибольшего нормального

напряжения

=14,86 =148,6 МПа.

Определим значение наибольшего касательного напряжения

=0,52 =5,2МПа.

Пример 4.3. Определить нормальное и касательное напряжения в точке К на уровне примыкания стенки к полкам стального двутавра (I30), а также наибольшие нормальные и касательные напряжения, если М х =50 кНм=50 10 2 кНсм, Q =30 кН.

Решение. Из сортамента балки двутавровые выписываем необходимые данные для двутавра I30.

h = 300мм=30 см, b=135мм=13,5см, d = 6,5 см=0,65 см,

t=10,2 мм=1,02 см.

Площадь сечения А= 46,5 см 2 , момент инерции J х = 7080 см 4 , момент сопротивления W х = 472 см 3 .

Определим значение статического момента площади сечения полки относительно нейтральной оси х .

= 199,53 см 3 .

На уровне примыкания стенки к полкам касательные напряжения

Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечного малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 3.1.

Совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим какую-либо точку называют напряженным состоянием тела в данной точке

Рис. 3 . 1

Таким образом, на гранях элементарного параллелепипеда, выделенного в окрестности точки нагруженного тела, действуют девять компонентов напряжения. Запишем их в виде следующей квадратной матрицы:

где в первой, второй и третьей строках расположены составляющие напряжений соответственно на площадках, перпендикулярных к осям , , . Эта совокупность напряжений называется тензором напряжений .

Закон парности касательных напряжений. Главные площадки и главные напряжения.

Составим уравнение моментов всех сил, приложенных к элементарному параллелепипеду относительно оси . (рис. 3.1.).

Силы, параллельные этой оси и пересекающие ее, в уравнение не войдут. Моменты сил на двух гранях, перпендикулярных оси , уравновешиваются, равно как и моменты сил на верхней и нижней гранях элемента. Таким образом, получаем:

Отсюда следует, что .

Аналогично из двух других уравнений находим:

Итак, имеем равенства

называемые законом парности касательных напряжений

Закон парности касательных напряжений – касательные напряжения на двух любых, но взаимно перпендикулярных площадках, направленные перпендикулярно к линии пересечения площадок, равны по величине. При этом они стремятся повернуть элемент в разные стороны.

При изменении ориентации граней выделенного элемента меняются также действующие на его гранях напряжения. Можно провести такие площадки, на которых касательные напряжения равны нулю. Площадки, на которых касательные напряжения равны нулю, называются главными площадками , а нормальные напряжения на этих площадках – главными напряжениями .

Можно доказать, что в каждой точке напряженного тела существует три главные взаимно перпендикулярные площадки.

Главные напряжения обозначают , , . При этом индексы следует расставлять так, чтобы выполнялось неравенство

Если отличны от нуля все три главных напряжения, то напряженное состояние называется трехосным или объемным (рис.3.2, а).

Если равно нулю одно из главных напряжения, то напряженное состояние называется двухосным или плоским (рис.3.2, б).

Если равно нулю два главных напряжения, то напряженное состояние называется одноосным или линейны м (рис.3.2, в).

Рис. 3 . 2

Плоское напряженное состояние.

При исследовании напряженного состояния элементов конструкций наиболее часто приходится иметь дело с плоским напряженным состоянием. Оно встречается при кручении, изгибе и сложном сопротивлении. Поэтому на нем мы остановимся несколько подробнее.

Рассмотрим элемент, грани которого являются главными площадками.

Рис. 3 . 3

По ним действуют положительные напряжения и , а третье главное напряжение (направление перпендикулярно к плоскости чертежа).

Проведем сечение I – I, которое определит площадку (), характеризуемую положительным углом . Напряжения и по этой площадке будут определяться по формулам:

(3.3)

Сжимающие главные напряжения подставляют в эти формулы со знаком «минус», а угол отсчитывают от алгебраически большего главного напряжения.

Проведем сечение II – II, которое определит площадку , перпендикулярную площадке . Нормаль к ней образует с направлением угол

Подставив в формулы (3.2) и (3.3) значения угла , будем иметь

. (3.5)

Совокупность формул (3.2) - (3.5) дает возможность находить напряжения по любым взаимно перпендикулярным наклонным площадкам, если известны главные напряжения.

Складывая равенства (3.2) и (3.4), обнаруживаем, что

, (3.6)

т. е. сумма нормальных напряжений по двум взаимно перпендикулярным площадкам не зависит от угла наклона этих площадок и равна сумме главных напряжений.

Из формул (3.3) и (3.5) видим, что касательные напряжения достигают наибольшей величины при , т. е. по площадкам, наклоненным к главным площадкам под углом , причем

. (3.7)

Сравнивая формулы (3.3) и (3.5), находим, что

Это равенство выражает закон парности касательных напряжений.

Проведем теперь еще два сечения (рис. 3.3): Сечение ІІІ – ІІІ, параллельное І – І, и сечение ІV – ІV, параллельное ІІ – ІІ. Элемент , выделенный четырьмя сечениями из элемента (рис. 3.4, а), будет иметь вид, показанный на рис 3.4, б. Оба элемента определяют одно и то же напряженное состояние, но элемент представляет его главными напряжениями, а элемент - напряжениями на наклонных площадках.

Рис. 3 . 4

В теории напряженного состояния можно разграничить две основные задачи.

Прямая задача . В точке известны положения главных площадок и соответствующие им главные напряжения; требуется найти нормальные и касательные напряжения по площадкам, наклоненным под заданным углом к главным.

Обратная задача . В точке известны нормальные и касательные напряжения, действующие в двух взаимно перпендикулярных площадках; требуется найти главные направления и главные напряжения. Обе задачи можно решать как аналитически, так и графически.

Прямая задача в плоском напряженном состоянии. Круг напряжений (круг Мора).

Аналитическое решение прямой задачи дается формулами (3.2) – (3.5).

Проанализируем напряженное состояние, воспользовавшись простым графическим построением. Для этого введем в рассмотрение геометрическую плоскость и отнесем ее к прямоугольным координатным осям и . Порядок расчета опишем на примере напряженного состояния, изображенного на рис. 3.5, а.

Выбрав для напряжений некоторый масштаб, откладываем на оси абсцисс (рис 3.5, б) отрезки

На как на диаметре строим окружность с центром в точке . Построенный круг носит название круга напряжений или круга Мора .

Рис. 3 . 5

Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Так, для определения напряжения на площадке, проведенной под углом (рис. 3.5, а) из центра круга (рис 3.5, б) проводим луч под углом до пересечения с окружностью в точке (положительные углы откладываем против часовой стрелки). Абсцисса точки (отрезок ) равна нормальному напряжению , а ордината ее (отрезок ) – касательному напряжению .

Напряжение на площадке, перпендикулярной к рассмотренной, найдем, проведя луч под углом и получив в пересечении с окружностью точку . Очевидно, ордината точки соответствует касательному напряжению , а абсцисса точки - нормальному напряжению .

Проведя из точки линию, параллельную (в нашем случае горизонталь), до пересечения с кругом, найдем полюс – точку . Линия, соединяющая полюс с любой точкой круга, параллельна направлению нормального напряжения на площадке, которой эта точка соответствует. Так, например, линия параллельна главному напряжению . Очевидно, что линия параллельна направлению главного напряжения .

Обратная задача в плоском напряженном состоянии.

При практических расчетах обычно определяют нормальные и касательные напряжения на некоторых двух взаимно перпендикулярных площадках. Пусть, например, известны напряжения , , , (рис. 3.6, а). По этим данным требуется определить величины главных напряжений и положение главных площадок.

Сначала решим эту задачу графически. Примем, что >, а >.

В геометрической плоскости в системе координат нанесем точку , с координатами , и точку с координатами ,(рис. 3.6, б). Соединив точки и , находим центр круга – точку - и радиусом проводим окружность. Абсциссы точек ее пересечения с осью - отрезки и - дадут соответственно величины главных напряжений и .

Для определения положения главных площадок найдем полюс и воспользуемся его свойством. Проведем из точки линию параллельно линии действия напряжения , т. е. горизонталь. Точка пересечения этой линии с окружностью и является полюсом. Соединяя полюс с точками и , получим направления главных напряжений. Главные площадки перпендикулярны к найденным направлениям главных напряжений.

Рис. 3 . 6

Используем построенный круг для получения аналитических выражений главных напряжений и :

(3.9)

(3.10)

Формула (3.10) определяет единственное значение угла , на который нужно повернуть нормаль , чтобы получить направление алгебраически большего главного напряжения. Отрицательному значению соответствует поворот по часовой стрелке.

Если одно из главных напряжений окажется отрицательным, а другое положительным, то их следует обозначать и . Если оба главных напряжения окажутся отрицательными, то их следует обозначать и .

Лекция 4 . Теории прочности . Чистый сдвиг{jcomments on}

Теории прочности.

Важнейшей задачей инженерного расчета является оценка прочности элемента конструкции по известному напряженному состоянию. Для простых видов деформаций, в частности для одноосных напряженных состояний, определение значений опасных напряжений не представляет особых трудностей. Вспомним, что под опасными напряжениями понимают напряжения, соответствующие началу разрушения (при хрупком состоянии материала) или появлению остаточных деформаций (в случае пластического состояния материала):

По опасным напряжениям устанавливают допускаемые напряжения, обеспечивающие определенный запас против наступления предельного состояния.

При сложном напряженном состоянии, как показывают опыты, опасное состояние может иметь место при различных значениях главных напряжений , , в зависимости от соотношений между ними. В этом случае вводят гипотезу о преимущественном влиянии на прочность материала того или иного фактора. Предельное значение фактора, определяющего прочность, находят на основании простых опытов (на растяжение, сжатие, кручение).

Выбранная указанным образом гипотеза называется механической теорией прочности .

Рассмотрим классические теории прочности.

Зная компоненты напряжений в любой точке пластинки в условиях плоского напряженного состояния или плоской деформации, можно найти из уравнений статики напряжения на любой наклонной по отношению к осям х и у плоскости (площадке), проходящей через эту точку перпендикулярно пластинке. Обозначим через Р некоторую точку в напряженной пластинке и допустим, что компоненты напряжения известны (рис. 12). На малом расстоянии от Р проведем плоскость параллельную оси так, чтобы эта плоскость вместе с координатными плоскостями вырезала из пластинки очень малую треугольную призму Поскольку напряжения изменяются по объему тела непрерывно, то при уменьшении размеров вырезанного элемента напряжение, действующее на площадке будет стремиться к напряжению на параллельной площадке, проходящей через точку Р.

При рассмотрении условий равновесия малой треугольной призмы объемными силами можно пренебречь как величинами высшего порядка малости. Подобным образом, если вырезанный элемент очень мал, можно пренебречь изменениями напряжений по граням и предположить, что напряжения распределены равномерно. Тогда силы, действующие на треугольную призму, можно определить путем умножения компонент напряжений на площади граней. Пусть - направление нормали к плоскости а косинусы углов между нормалью и осями х и у обозначаются следующим образом:

Тогда, если через А обозначить площадь грани элемента, то площади двух других граней будут .

Если обозначить через X и компоненты напряжений, действующих на грани то условия равновесия призматического элемента приводят к следующим соотношениям:

Таким образом, компоненты напряжений на любой площади, определяемой направляющими косинусами и можно легко найти из соотношений (12), если известны три компоненты напряжения в точке Р.

Обозначим через а угол между нормалью к площадке и осью х, так что тогда из соотношений (12) для нормальной и касательной компоненты напряжений на площадке получим формулы:

Очевидно, угол можно выбрать таким образом, чтобы касательное напряжение на площадке стало равным нулю. Для этого случая получаем

Из этого уравнения можно найти два взаимно перпендикулярных направления, для которых касательные напряжения на соответствующих площадках равны нулю. Эти направления называются главными, а соответствующие нормальные напряжения - главными нормальными напряжениями.

Если за главные направления принять направления осей х и у, то компонента равна нулю и формулы (13) принимают более простой вид

Изменение компонент напряжений а и в зависимости от угла а можно легко представить графически в виде диаграммы в координатах а и Каждой ориентации площадки соответствует точка на этой диаграмме, координаты которой представляют собой значения напряжений действующих на этой площадке. Такая диаграмма представлена на рис. 13. Для площадок, перпендикулярных к главным направлениям, мы получаем точки А и В с абсциссами соответственно. Теперь можно

доказать, что компоненты напряжения для любой площадки определяемой углом а (рис. 12), будут представляться координатами некоторой точки на окружности, для которой отрезок А В является диаметром. Чтобы найти эту точку, достаточно отмерить от точки А в том же направлении, в каком измеряется угол а на рис. 12, дугу, отвечающую углу . Для координат построенной таким образом точки D из рис. 13 получим

Сравнение с формулами (13) показывает, что координаты точки D дают численные значения компонент напряжения на площадке определяемой углом а. Чтобы привести в соответствие знак касательной компоненты, примем, что положительные значения откладываются вверх (рис. 13, а), и будем считать касательные напряжения положительными, когда они дают момент, действующий по направлению часовой стрелки, как это имеет место на гранях элемента (рис. 13, б). Касательные напряжения противоположного направления, например действующие на гранях элемента, считаются отрицательными.

Будем менять ориентацию площадки вращая ее вокруг оси, перпендикулярной плоскости (рис. 12) по направлению часовой стрелки так, что угол а будет изменяться от 0 до при этом точка D на рис. 13 будет перемещаться от А к В. Таким образом, нижняя половина круга определяет изменение напряжений для всех значений а в этих пределах. В свою очередь верхняя часть круга дает напряжения для интервала

Продолжая радиус до точки (рис. 13), т. е. беря угол равным вместо , получаем напряжения на площадке, перпендикулярной площадке (рис. 12). Отсюда видно, что касательные напряжения на двух взаимно перпендикулярных площадках численно друг другу равны, как это и было доказано ранее. Что касается нормальных напряжений, то мы видим из

рисунка, что т. е. сумма нормальных напряжений, действующих на двух взаимно перпендикулярных площадках, при изменении угла а остается постоянной.

Максимальное касательное напряжение ттах дается на диаграмме (рис. 13) максимальной ординатой окружности, т. е. равно радиусу окружности. Отсюда

Оно действует на площадке, для которой т. е. на площадке, нормаль к которой делит пополам угол между двумя главными направлениями.

Соответствующая диаграмма может быть построена и для случая, когда одно или оба главных напряжения отрицательны, т. е. для случая сжатия. Нужно только величину сжимающего напряжения откладывать в сторону отрицательных абсцисс. На рис. 14, а изображена диаграмма для случая, когда оба главных напряжения отрицательны, на рис. 14, б построена диаграмма для случая чистого сдвига.

Из рис. 13 и 14 видно, что напряжение в любой точке можно разложить на две части. Одна из них представляет собой двухосное растяжение (или сжатие), две компоненты которого равны между собой и по величине определяются абсциссой центра круга Мора.

Другая часть представляет собой чистый сдвиг с касательным напряжением, величина которого дается радиусом круга. При наложении нескольких плоских напряженных состояний равномерные растяжения (или сжатия) можно складывать друг с другом алгебраически. При наложении состояний чистого сдвига нужно учитывать направления плоскостей, на которые действуют соответствующие касательные напряжения. Можно показать, что при наложении друг на друга двух напряженных состояний чистого сдвига, для которых плоскости максимального касательного напряжения находятся под углом друг к другу, получающаяся в результате система сведется к другому случаю чистого сдвига. Например, рис. 15 показывает как определять напряжение, производимое двумя состояниями чистого сдвига с величинами касательных напряжений и на площадке, положение которой определяется углом Первое из этих состояний относится к плоскостям (рис. 15, а), а второе - к плоскостям, наклоненным к плоскостям