Статический массив: объявление, заполнение, использование. Статический массив: объявление, заполнение, использование Объявление и инициализация массивов

Мультимедиа

Описание многомерного массива позволяет использовать в программе любой из его элементов как индексированную переменную.

Индексированная переменная (индексное выражение) – обозначение ячейки для хранения конкретного элемента массивауказанием идентификатора массива и индексов элемента по каждому измерению.

В массивах Си/Си++ индексы элементов на единицу меньше заданных математически. Это обстоятельство должно учитываться в программе, особенно при формировании условия повторения (выхода из) цикла.

Особенность работы с массивами в Си/Си++ – любой двумерный массив можно представить в виде одномерного при условии укрупнения единицы хранения (элемента).

Например, если в качестве элементов выбрать строки (столбцы), то двумерный массив превратится в одномерный массив строк (столбцов).

Хранение двумерного массива, например X(m n), реализуется схемой распределения оперативной памяти (рис. 9.4).

Для хранения трехмерного массива, например S(k m n), схема распределения оперативной памяти представлена на рис 9.5 (первая и последняя страницы).

x 00 x 01 . . . x 0j . . . x 0 n-1
s 0i0 s 0i1 . . . s 0ij . . . s 0i n-1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

s 0m-1 0 s 0 m-1 1 . . . s 0 m-1 j . . . s 0 m-1 n-1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

s k-100 s k-101 . . . s k-10j . . . s k-10 n-1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

s k-1i0 s k-1i1 . . . s k-1ij . . . s k-1i n-1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

s k-1m-10 s k-1 m-1 1 . . . s k-1 m-1 j . . . s k-1 m-1 n-1

Рис. 9.5. Хранение элементов трехмерного массива

Анализ схем показывает, что все элементы многомерного массива располагаются в оперативной памяти линейно (непрерывно и последовательно). При этом двумерный массив представляется последовательностью строк, трехмерный – последовательностью страниц, каждая из которых в свою очередь является последовательностью строк.

Изменение индексов происходит последовательно – справа налево . Например, для трёхмерного массива вначале полностью перебирается крайний правый индекс (столбцов), затем средний (строк) и последним – левый (страниц).

Длина ячейки хранения каждого элемента определяется типом массива.

Таким образом, любой трехмерный массив представляется в виде одномерного массива двумерных матриц (страниц), каждая из которых, в свою очередь, рассматривается как одномерный массив строк (столбцов).

Следовательно, n-мерный массив в Си/Си++ интерпретируется как совокупность массивов (n-1) размерности, которые также могут быть представлены совокупностью массивов еще меньшей размерности.

Структура обозначения индексированной переменной многомерного массива:

где имя – идентификатор массива;

индекс_i – целая константа, задающая номер элемента по i-му измерению;

– ограничители индекса элемента по каждому измерению.

Так, в описанном ранее массиве D(20 30) элемент, расположенный в первом столбце первой строки, обозначается индексным выражением d, во втором столбце той же строки – d, в первом столбце второй строки – d, текущий – d[i][j], элемент последнего столбца, последней строки – d.

Рассмотренный пример идентификации элементов массива D применим к любому из двумерных массивов, указанных в соответствующем описателе.

Для трехмерных массивов обозначение элементов выполняется аналогично. Например, в массиве S(10 5 15) (описан ранее) элемент первой страницы на пересечении первой строки и первого столбца обозначается индексным выражением s, элемент второго столбца первой строки той же страницы – s, второго столбца второй строки первой страницы – s, текущий – s[k][i][j], а элемент последнего столбца, последней строки, последней страницы – s.

Индекс, при необходимости, может задаваться арифметическим выражением. Например, d, d[i], s, s[i].

ü Внимание! Индекс на момент использования переменной должен быть определен (рассчитан) и укладываться в заданный описателем диапазон.

Рассмотренные формы представления индексированных переменных позволяют осуществить программную реализацию элементов алгоритма с использованием многомерных массивов.

Непрерывное и последовательное расположение элементов многомерного массива в оперативной памяти позволяет адрес каждого элемента представить зависимостью:

а = а1 + смещение,

где а – адрес некоторого текущего элемента массива;

а1 – адрес первого элемента массива;

смещение – номер текущего элемента относительно первого.

Смещение рассчитывается для массивов различной размерности по аналогичным методикам.

Так для двумерного массива

т.е. произведение номера текущей строки на ее размер (число столбцов) плюс номер текущего столбца. Первое слагаемое определяет число элементов в вышерасположенных строках, второе – число элементов в текущей строке от ее начала до искомого включительно.

Для трехмерного массива

смещение = индекс_1*(разм_2* разм_3) +

Первое слагаемое определяет число элементов в ранее расположенных страницах, второе – в предыдущих строках текущей страницы, третье – число элементов в текущей строке текущей страницы.

ü Внимание! Для любого массива размер первого измерения (разм_1) в расчете смещения не используется.

В качестве сомножителей (разм_i) используются значения, указанные в описателях массивов.

Описатели массивов определяют максимально возможные значения (размеры) каждого измерения. Это позволяет использовать зарезервированное пространство оперативной памяти полностью, либо частично, обеспечивая универсальность размеров в сторону уменьшения. Для двумерного массива это утверждение поясняется схемой (рис. 9.6):

Размер, заданный в описателе (максимальное число столбцов n max)
Размер, используемый в расчетах (n)
Размер, использу-емый в расчетах (m) Размер, заданный в описателе (максимальное число строк m max)

Рис. 9.6. Соответствие реальных размеров описанным

Размеры, указанные в описателе определяют количество зарезервированных в оперативной памяти ячеек. При этом ячейки создаваемого двумерного массива располагаются последовательно и линейно (построчно). Если в расчетах зарезервированное пространство используется частично (с меньшим числом строк и/или столбцов), то участки с хранимыми значениями будут чередоваться с неиспользуемыми, количество которых должно быть учтено при указании длины каждой строки в индексном выражении. Суммарное количество элементов каждой строки задано в описателе массива. Поэтому адреса любой ячейки определяется индексным выражением, использующим в качестве одного из параметров указанный в описателе размер.

Так, если двумерный массив z описан как z, а в задаче используется с размерами m=7, n=12, то адрес текущего элемента &z[i][j] = z + i * 20 + j, а не &z[i][j] = z + i * n + j.

Исходя из изложенного, адрес i-го, j-го элемента массива D(20х30) вычисляется по формуле

&(d[i][j]) = d + i * 30 + j,

а адрес k-го, i-го, j-го элемента массива S(10х5х15) вычисляется как

&(s[k][i][j]) = s + k * (5 * 15) + i * 15 + j

Таким образом, индексное выражение полностью определяет адрес конкретной ячейки для хранения соответствующего элемента через параметры описателя, а не укороченные, реально заданные.

С учетом изложенного идентификация переменных алгоритма и создаваемой программы представлена в табл. 9.1.

Таблица 9.1

На основании схемы алгоритма и таблицы идентификации составим программу решения задачи.

Классический вариант программирования задачи

#include /* директивы */

#include /* препроцессора */

#include

#define M 10 /* увеличенные */

#define N 12 /* размеры массивов */

main() /* заголовок головной функции */

char buf; /*описание символьного массива*/

CharToOem(" Введите m (m<= ",buf); /* запрос */

printf("\n %s %d):",buf,M); /* и */

scanf("%d", &m); /* ввод */

CharToOem(" Введите n (n<= ",buf); /* фактических */

printf("\n %s %d):",buf,N); /* размеров */

scanf("%d", &n); /* массивов */

printf("\n n=%d m=%d ", n, m); /*вывод размеров массивов*/

for(i = 0; i < m; i++) /*заголовок внешнего цикла ввода x[i][j]*/

for(j = 0; j < n; j++) /*заголовок внутр. цикла ввода x[i][j]*/

CharToOem(" Введите значение ",buf); /* ввод */

printf("\n %s x[%d][%d]:",buf,i+1, j+1); /* элементов */

scanf("%f", & x[i][j]); /*массива Х*/

CharToOem(" Массив X",buf); /* вывод */

for(i = 0; i < m; i++)/* заголовок внешн. цикла вывода x[i][j]*/

for(j=0; j < n; j++)/*заголовок внутр. цикла вывода x[i][j]*/

printf(" %5.2f", x[i][j]);

for(i = 0; i < m ; i++ /*заголовок внешн. цикла расчета y[i][j]*/

for(j = 0; j < n; j++)/*заголовок внутр. цикла расчета y[i][j]*/

CharToOem(" Массив Y",buf); /* вывод */

printf("\n %s \n",buf); /*заголовка*/

for(i = 0 ; i < m ; i++)/*заголовок внешн. цикла вывода y[i][j]*/

for(j = 0; j < n; j++) /*заголовок внутр. цикла вывода y[i][j]*/

printf(" %5.2f", y[i][j]);

2 3 – размеры массива;

Результаты решения представлены в приложении 9.1.

Программирование задачи с графическим интерфейсом

Программирование задачи при использовании графического интерфейса предварим его разработкой.

ListBoxХi
ListBoxYi

Для ввода количества столбцов и строк массива планируем однострочные поля редактирования (EditN, EditМ). Для ввода элементов массива Х – многострочное поле редактирования (EditХ). Вывод элементов массивов X и Y реализуем в поля-списки (ListBoxXi, ListBoxYi).

Управление процессом решения реализуем двумя командными кнопками, расположенными в нижней части окна. Назначение каждой определяется ее названием.

Использование графического интерфейса для вывода числовых элементов двумерных массивов в виде таблицы требует:

· представления каждого числового данного соответствующей символьной строкой;

· формирования общей символьной строки (из полученных для каждого элемента строк), соответствующей числовой строке массива;

· размещение сформированной общей символьной строки в окне вывода.

Представление числовых данных символьными строками комментариев не требует.

Формирование элементов выводимой строки в единое целое выполняется функцией «склеивания» строк strcat.

Функция «склеивания» символьных строк strcat()

Функция предназначена для получения результирующей строки из двух исходных строк. Структура функции:

strcat(buf1, buf2)

где strcat – обозначение функции;

buf1 – имя исходной (результирующей) символьной строки;

buf2 – имя добавляемой символьной строки;

() – ограничители аргумента.

Функция располагается в библиотеке string.h.

Правила записи и использования

1. Операнды buf1 и buf2 – символьные строки. Строка buf1 увеличивает свое значение после выполнения функции на величину buf2.

2. Обязательное условие формирования строк buf1 и buf2 – окончание каждой символом «\0».

3. Пробелы, при необходимости, формируются структурой соответствующей строки (включением в нее).

4. Однократное использование функции – чтение строки buf1, добавление к ней строки buf2 и занесение результата в buf1. Поэтому размер buf1 в описателе создается увеличенным (на величину добавляемых компонентов).

5. Многократное использование функции – последовательное добавление второго операнда (buf2) к предварительно полученной строке buf1.

6. Повторное использование функции для создания новой результирующей строки требует предварительной очистки первого аргумента функции. Один из вариантов – присваивание строке buf1 пустой строки: sprintf(buf1,"%s","");

7. Проверка результирующей строки на переполнение не выполняется.

8. Функция используется как операнд арифметического выражения (присваивания) или самостоятельный оператор.

Общий вид фрагмента программы «склеивания» символьных строк str и buf:

#include /* директива препроцессора*/

char str, buf; /*описатель символьных строк*/

EditStr->

EditBuf->GetText(buf, 10); /*ввод buf из поля EditBuf*/

Описатель типа определяет массивы str и buf как символьные максимальной длины 25 и 10 символов. Пятая и шестая строки предписывает ввод строк str и buf из полей EditStr и EditBuf соответственно. Оператор strcat(str, buf); формирует «склеенную» строку и хранит ее под именем str .

Многократное использование функции позволяет создать результирующую строку с любым количеством компонентов в пределах, предусмотренных размером buf1.

Вариант 1: последовательное соединение нескольких строк

#include /* директива препроцессора*/

char str, buf1, buf2;/*описатель символьных строк*/

EditStr->GetText(str, 10); /*ввод строки str из поля EditStr*/

EditBuf1->GetText(buf1, 10); /*ввод buf1 из поля EditBuf1*/

EditBuf2->GetText(buf2, 10); /*ввод buf2 из поля EditBuf2*/

strcat(str, buf1); /*формирование результирующей строки str «склеиванием» исходных строк str и buf1*/

strcat(str, buf2); /*формирование результирующей строки str «склеиванием» полученных str и buf2*/

Описатель типа определяет массивы str, buf1 и buf2 как символьные, максимальной длины 25, 10 и 5 символов, соответственно. Пятая, шестая и седьмая строки предписывает ввод str, buf1 и buf2 из полей EditStr, EditBuf1 и EditBuf2 соответственно. Операторы strcat(str, buf1); и strcat(str, buf2); последовательно формируют «склеенную» строку из str, buf1 и buf2. Полученная строка имеет имя str .

Вариант 2: использование функции в теле цикла.

#include /* директива препроцессора*/

char str = “ ”, buf;/*описание и инициализация

символьных строк*/

for(j = 0 ; j < 5 ; j++) /* заголовок цикла ввода buf и формирования str*/

EditBuf->GetLine(buf, 10, j); /* ввод buf */

strcat(str, buf); /*формирование результирующей строки str «склеиванием» исходных строк str и buf*/

Описатель типа определяет массивы str и buf как символьные максимальной длины 50 и 10 символов соответственно и инициализирует str пустой строкой. Оператор EditBuf->GetLine (buf, 10, j); предписывает ввод buf из j-й строки многострочного поля EditBuf. Оператор strcat(str, buf); формирует в теле цикла, из последовательно вводимых строк buf, «склеенную» строку и хранит ее под именем str .

С учетом планируемого интерфейса выполним программирование задачи.

#include

#include

#include

void TSumprDlgClient::Ok()

// INSERT>> Your code here.

float x[M][N], y[M][N]; /* описатели массивов */

char buf,buf1=" "; /*описание символьного массива*/

ListBoxYi->

ListBoxXi->ClearList(); /*очистка поля вывода*/

EditN->

n = atoi(buf); /* столбцов массива*/

EditM->GetText(buf, 10); /*ввод количества*/

m = atoi(buf); /* строк массива*/

for(i = 0 ; i < m ; i++) /* заголовок внешн. цикла ввода x[i][j] */

for(j = 0 ; j < n ; j++) /* заголовок внутр. цикла ввода x[i][j] */

EditX->GetLine(buf, 30, i*n+j); /* ввод элементов */

x[i][j]=atof(buf); /* массива Х*/

for(i = 0; i < m; i++) /*заголовок внешн. цикла вывода x[i][j]*/

for(j = 0; j < n; j++)/*заголовок внутр. цикла вывода x[i][j]*/

sprintf(buf,"%11.3f",x[i][j]); /* вывод текущих*/

ListBoxXi->AddString(buf1); /*значений xi*/

sprintf(buf1,"%s","");

for(i = 0; i < m; i++)/*заголовок внешн. цикла расчета y[i][j]*/

for(j = 0; j < n; j++) /*заголовок внутр. цикла расчета y[i][j]*/

y[ i ][ j ] = x[ i ][ j ] / 2.;

for(i = 0 ; i < m ; i++)/*заголовок внешн. цикла вывода y[i][j]*/

for(j = 0; j < n; j++)/*заголовок внутр. цикла вывода y[i][j]*/

sprintf(buf,"%11.6f",y[i][j]); /* вывод текущих*/

strcat(buf1, buf); /*склеенных*/

ListBoxYi->AddString(buf1); /*значений yi*/

sprintf(buf1,"%s","");

3 2 – размеры массива;

10. 20. 30. – элементы первой строки;

100. 200. 300. – элементы второй строки.

Под закрывающей скобкой приведены исходные данные для решения задачи.

Результаты решения представлены в приложении 9.2.


Похожая информация.


Кроме файлового типа. Тип компонент называется базовым типом . Каждая компонента может быть явно обозначена с помощью имени переменной-массива, за которым в квадратных скобках следует индекс . Их тип называется типом индекса . Время, требуемое для доступа любой компоненты, не зависит от значения индекса. Поэтому о массивах можно говорить как об объектах, структура которых допускает случайный (или прямой ) доступ .

Объявление переменных массивового типа

Переменная массивового типа описывается в разделе описания переменных в следующей форме:

Var <идентификатор>: array[<тип индекса>] of <тип компонент>

Чаще всего в качестве типа индекса употребляется интервальный тип . Например, одномерный массив среднемесячных температур опишется так:

Var T: array of real;

Описание массива определяет, во-первых, размещение массива в памяти, во-вторых, правила его дальнейшего употребления в программе. Последовательные элементы массива располагаются в последовательных ячейках памяти (T, T и т.д.), причем значения индекса не должны выходить из диапазона 1...12. В качестве индекса может употребляться любое выражение соответствующего типа. Например:

T, T

Тип индекса может быть любым скалярным порядковым типом, кроме integer (в реализации Turbo Pascal). Например, в программе могут присутствовать следующие описания:

Var Cod: array of 1..100; L: array of Char;

В такой программе допустимы следующие обозначения элементов массивов:

Cod["x"]; L; cod; L;

В некоторых случаях бывает удобно в качестве индекса использовать перечисляемый тип . Например, данные о количестве учеников в четырех десятых классах одной школы могут храниться в следующем массиве:

Type Index=(А, В, С, D); Var Class_10: array of byte;

И если, например, элемент Class_10[A] равен 35, то это означает, что в 10 «А» классе 35 человек. Такое индексирование улучшает наглядность программы.

Часто структурированному типу присваивается имя в разделе типов, которое затем используется в разделе описания переменных.

Type Mas1 = array of integer; Mas2 = array[-10..10] of char; var Num: Mas1; Sim: Mas2;

Многомерные массивы

Многомерный массив в Паскале трактуется как одномерный массив, тип элементов которого также является массивом (массив массивов). Например, среднемесячную температуру за 10 лет можно можно хранить в массиве, описанном следующим образом:

Var H: array of array of real;

Вот примеры обозначения некоторых элементов этого массива:

Н; Н; Н;

Однако чаще употребляется другая, эквивалентная форма обозначения элементов двумерного массива:

Н; Н; Н;

Переменная Н обозначает всю первую строку таблицы, т.е. весь массив температур за 1981 г. Другим вариантом, эквивалентным приведенному выше описанию, является следующий:

Type Month = array of real; Year = array of Month; var H: Year;

Наиболее краткий вариант описания данного массива такой:

Var H: array of real;

Трехмерный массив можно определить как одномерный массив, у которого элементами являются двумерные массивы. Вот пример описания трехмерного массива:

Var A: array of integer;

Это массив, состоящий из 10x20x30 = 6000 целых чисел и занимающий в памяти 6000x2 = 12000 байт. В Паскале нет ограничения сверху на размерность массива. Однако в каждой конкретной реализации Паскаля ограничивается объем памяти, выделяемый под массивы.

По аналогии с математикой одномерные числовые массивы часто называют векторами, а двумерные - матрицами. Размер массивов не может быть изменен в процессе выполнения. Изменение размеров массива происходит через изменение в тексте программы и повторную компиляцию. Для упрощения таких изменений удобно определять индексные параметры в разделе констант:

Сonst Imax=10; Jmax=20; var Mas: array of integer;

Теперь для изменения размеров массива Mas и всех операторов программы, связанных с этими размерами, достаточно отредактировать только одну строку в программе - раздел констант.

Операции над массивами

Действия над массивом как единым целым. Такие действия допустимы лишь в двух случаях:

  • присваивание значений одного массива другому;
  • операции отношения «равно», «не равно».

В обоих случаях массивы должны иметь одинаковые типы (тип индексов и тип элементов). Пример:

Var P, Q: Array Of Real;

При выполнении операции присваивания P:= Q все элементы массива P станут равны соответствующим элементам массива Q.

В многомерных массивах переменная с индексом может обозначать целый массив. Например, если в таблице H требуется, чтобы данные за 1989 г. были такими же, как за 1981 г. (девятой строке присвоить значение первой строки), то это можно делать так:

Н := Н;

А если нужно поменять местами значения этих строк, то это делается через третью переменную того же типа:

Р:= Н; Н := Н; Н := Р;

где P описана так:

Var P: Array Of Real;

Обработка массивов

Обработка массивов в программах производится покомпонентно. Вот примеры ввода значений в массивы:

For I:= 1 to 12 do readln(T[I]); for I:= 1 to IMax do for J:= 1 to JMax do readln(Mas);

Здесь каждое следующее значение будет вводиться с новой строки. Для построчного ввода используется оператор read . Аналогично в цикле по индексной переменной организуется вывод значений массива. Например:

For I:= 1 tо 12 do write(T[I]:8:4);

Следующий фрагмент программы организует построчный вывод матрицы на экран:

For I:= 1 to IMax do begin for J:= l to JMax do write(Mas:6); writeln; end;

После печати очередной строки матрицы оператор writeln без параметров переведет курсор в начало новой строки. Следует заметить, что в последнем примере матрица на экране будет получена в естественной форме прямоугольной таблицы, если JMax не превышает 12.

Динамические массивы

Во FreePascal, Delphi добавлена интересная возможность описания массивов без указания размерностей и, соответственно, пределов изменения индексов:

Var IntArray: array of integer;

Такие массивы являются динамическими и изначально имеют нулевую длину. Установка размера массива и определение его во время выполнения программы производится так же как и для строк, с помощью функций SetLength и Length , соответственно. Элементы в данном случае нумеруются от нуля.

Program UsingDynamicArrays1; var А, В: Array of Integer; {Описание двух переменных - динамических массивов целочисленных элементов} begin SetLength(A, 5); {Установка размера массива А (5 элементов) } А := 1; {Присвоение значения 1 элементу массива А с номером 0 } end.

Переменные-динамические массивы являются указателями и операции с ними производятся как с указателями. Например, при присвоении одного массива другому элементы одного массива не копируются во второй, а копируется адрес массива. Соответственно, сравнение двух массивов в логических выражениях типа «равно - не равно» производится сравнением адресов. Пример присвоения одного массива другому:

Program UsingDynamicArrays2; var А, В: array of integer; {Описание двух переменных - динамических массивов целочисленных элементов} begin SetLength(A, 5); { Установка размера массива А (5 элементов) } А := 14; {Присвоение значения 14 нулевому элементу массива А} В:= А; {Присвоение массива А массиву В, теперь переменные А и В указывают на один и тот же массив} В := 2; {Присвоение нулевому элементу массива В значения 2, теперь нулевой элемент массива А также имеет значение 2} end.

Отметим существенное отличие в работе со строками и динамическими массивами, имеющими одинаковое внутреннее представление на основе указателей, но разные методы работы. Две разные строки, состоящие из одинакового набора символов, считаются равными, а два разных массива, содержащие одинаковые элементы, не равны.

Что такое массив?

Массив - это однородный, упорядоченный структурированный тип данных с прямым доступом к элементам. Элементы массива объединяются общим именем и занимают в компьютере определенную конечную область памяти. К любому элементу массива можно обратиться, указав имя массива и индекс элемента в массиве.

Одномерные и двумерные массивы

Если в массиве для обращения к элементам используется только один порядковый номер, то такой массив называется линейным, или одномерным . Одномерный массив можно представить в виде таблицы, в которой существует только одна строка.

Количество индексов элементов массива определяет размерность массива.

Массивы с двумя индексами называют двумерными . Такие массивы можно представить в виде таблицы, в которой номер строки соответствует первому индексу, а номер ячейки в строке (номер столбца) - второму индексу.

Чаще всего применяются одномерные массивы и двумерные массивы .

Объявление массива

Чтобы объявить массив (это необходимо для выделения памяти, в которой будут храниться значения элементов массива), следует указать его имя и размерность при помощи ключевого слова МАССИВ .

массив А

В данном примере будет объявлен одномерный массив А, состоящий из 10 элементов.

массив М

В данном примере будет объявлен двумерный массив М, который можно представить в виде таблицы, состоящей из 4-х строк по 5 ячеек в каждой строке.

Ограничение на размер одномерного массива - 1000 элементов, для двумерных - 1000х1000. В учебных целях лучше не использовать массивы более чем из 500 элементов, чтобы не замедлять время обработки. Все массивы в Game Logo имеют числовой тип (действительные числа).

Работа с массивами

После объявления массива каждый его элемент можно обработать, указав идентификатор (имя) массива и индекс элемента в квадратных скобках. Например, запись M позволяет обратиться ко второму элементу массива M.

При работе с двумерным массивом указываются два индекса. Например, запись
M делает доступным для обработки значение элемента, находящегося в третьей строке четвертого столбца массива M.

Индексированные элементы массива называются индексированными переменными и могут быть использованы так же, как и простые переменные. Например, они могут находиться в выражениях в качестве операндов или использоваться в качестве аргументов в командах.

Присваивание значений элементам массива

А = 15

Третьему элементу массива А будет присвоено значение 15.

М = 25

Элементу массива М, находящемуся во второй строке четвертого столбца, будет присвоено значение 25.

Ввести значение в элемент массива можно также при помощи команды СПРОСИ.

спроси А

Загрузить данные в массив можно при помощи команды ЗАГРУЗИ.

Примеры для одномерного массива А.

загрузи в A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
конец загрузки

загрузи в A
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
конец загрузки

Если данных будет недостаточно, то часть элементов останется незаполненной. Если избыточно, то они отсекутся.

Пример для двумерного массива М.

загрузи в M

56 78 56 36 24 15 17 25 36 25
15 17 25 36 24 56 78 56 36 24



15 17 25 36 24 56 78 56 36 24
78 56 36 24 15 17 17 25 36 25
36 24 56 78 24 56 78 56 36 24
39 78 56 36 24 25 15 15 89 71
конец загрузки

Заполнение массива случайными числами

Заполнить массив случайными числами можно при помощи цикла.

Пример заполнения элементов массива А псевдослучайными целыми числами в диапазоне от 10 до 99:

массив А
переменная х

Повторить для х = 1 до 100 {
А[х] = Int(случайное * 89) + 10
}

Вывод значений элементов массива

ПИШИ A

На экран будет выведено значение третьего элемента одномерного массива А.

ПИШИ# A

Будут выведены значения всех элементов массива А.

Знак # в команде ПИШИ выводит массив целиком. Для одномерных массивов вывод осуществляется с переносом строк. Для двумерных - как есть в виде таблицы, поэтому возможен выход за пределы поля.

Вывод массива в графическом виде

Массив может быть выведен в виде ряда точек (или таблицы из точек для двумерных массивов), цвет которых соответствует значению элемента массива (диапазон от 0 до 15, все числа меньше 0 отображаются черным цветом, больше 15 - белым). Этот способ удобен для моделирования клеточных автоматов, для визуализации сортировки и во многих других случаях, когда требуется визуальное восприятие происходящего в массиве.

ТОЧКА# [, ]

Необязательные параметры и взяты в скобки. Они обеспечивают отступ от начала координат (верхнего левого угла).

точка# M, 150, 50

Замена и копирование значений в массивах

Команда для замены во всем массиве одного значения на другое.

заменить в на

Команда для копирования всех значений одного массива в другой массив. Количество элементов и размерность массивов должны совпадать.

копировать в

Массив это структура данных, представленная в виде группы ячеек одного типа, объединенных под одним единым именем. Массивы используются для обработки большого количества однотипных данных. Имя массива является , что такое указатели расскажу немного позже. Отдельная ячейка данных массива называется элементом массива. Элементами массива могут быть данные любого типа. Массивы могут иметь как одно, так и более одного измерений. В зависимости от количества измерений массивы делятся на одномерные массивы, двумерные массивы, трёхмерные массивы и так далее до n-мерного массива. Чаще всего в программировании используются одномерные и двумерные массивы, поэтому мы рассмотрим только эти массивы.

Одномерные массивы в С++

Одномерный массив — массив, с одним параметром, характеризующим количество элементов одномерного массива. Фактически одномерный массив — это массив, у которого может быть только одна строка, и n-е количество столбцов. Столбцы в одномерном массиве — это элементы массива. На рисунке 1 показана структура целочисленного одномерного массива a . Размер этого массива — 16 ячеек.

Рисунок 1 — Массивы в С++

Заметьте, что максимальный индекс одномерного массива a равен 15, но размер массива 16 ячеек, потому что нумерация ячеек массива всегда начинается с 0. Индекс ячейки – это целое неотрицательное число, по которому можно обращаться к каждой ячейке массива и выполнять какие-либо действия над ней (ячейкой).

//синтаксис объявления одномерного массива в С++: /*тип данных*/ /*имя одномерного массива*/; //пример объявления одномерного массива, изображенного на рисунке 1: int a;

где, int —целочисленный ;

А — имя одномерного массива;
16 — размер одномерного массива, 16 ячеек.

Всегда сразу после имени массива идут квадратные скобочки, в которых задаётся размер одномерного массива, этим массив и отличается от всех остальных переменных.

//ещё один способ объявления одномерных массивов int mas, a;

Объявлены два одномерных массива mas и а размерами 10 и 16 соответственно. Причём в таком способе объявления все массивы будут иметь одинаковый тип данных, в нашем случае — int .

// массивы могут быть инициализированы при объявлении: int a = { 5, -12, -12, 9, 10, 0, -9, -12, -1, 23, 65, 64, 11, 43, 39, -15 }; // инициализация одномерного массива

Инициализация одномерного массива выполняется в фигурных скобках после знака равно , каждый элемент массива отделяется от предыдущего запятой.

Int a={5,-12,-12,9,10,0,-9,-12,-1,23,65,64,11,43,39,-15}; // инициализации массива без определения его размера.

В данном случае компилятор сам определит размер одномерного массива. Размер массива можно не указывать только при его инициализации, при обычном объявлении массива обязательно нужно указывать размер массива. Разработаем простую программу на обработку одномерного массива.

// array.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include << "obrabotka massiva" << endl; int array1 = { 5, -12, -12, 9, 10, 0, -9, -12, -1, 23, 65, 64, 11, 43, 39, -15 }; // объявление и инициализация одномерного массива cout << "indeks" << "\t\t" << "element massiva" << endl; // печать заголовков for (int counter = 0; counter < 16; counter++) //начало цикла { //вывод на экран индекса ячейки массива, а затем содержимого этой ячейки, в нашем случае - это целое число cout << "array1[" << counter << "]" << "\t\t" << array1 << endl; } system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// array.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main(int argc, char* argv) { cout << "obrabotka massiva" << endl; int array1 = { 5, -12, -12, 9, 10, 0, -9, -12, -1, 23, 65, 64, 11, 43, 39, -15 }; // объявление и инициализация одномерного массива cout << "indeks" << "\t\t" << "element massiva" << endl; // печать заголовков for (int counter = 0; counter < 16; counter++) //начало цикла { //вывод на экран индекса ячейки массива, а затем содержимого этой ячейки, в нашем случае - это целое число cout << "array1[" << counter << "]" << "\t\t" << array1 << endl; } return 0; }

В строках 10 — 11 объявлен и проинициализирован целочисленный одномерный массив с именем array1 , размер которого равен 16 ячейкам, то есть такой массив может хранить 16 чисел. Любая обработка массива осуществима только совместно с циклами. Какой цикл выбрать для обработки массива — это вам решать. Но лучше всего для этой задачи подходит . Переменную-счётчик counter будем использовать для обращения к элементам одномерного массива array1 . В условии продолжения цикла for стоит строгий знак неравенства, так как шестнадцатого индекса в одномерном массиве array1 нет. А так как нумерация ячеек начинается с нуля, то элементов в массиве 16. В теле цикла for оператор cout печатает элементы одномерного массива (см. Рисунок 2).

Obrabotka massiva indeks element massiva array1 5 array1 -12 array1 -12 array1 9 array1 10 array1 0 array1 -9 array1 -12 array1 -1 array1 23 array1 65 array1 64 array1 11 array1 43 array1 39 array1 -15 Для продолжения нажмите любую клавишу. . .

Рисунок 2 — Массивы в С++

Разработаем ещё одну программу на обработку одномерного массива в С++. Программа должна последовательно считывать десять введённых чисел с клавиатуры. Все введённые числа просуммировать, результат вывести на экран.

// array_sum.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include << "Enter elementi massiva: " << endl; int sum = 0; for (int counter = 0; counter < 10; counter++) // цикл для считывания чисел cin >> << "array1 = {"; for (int counter = 0; counter < 10; counter++) // цикл для вывода элементов массива cout << array1 << " "; // выводим элементы массива на стандартное устройство вывода for (int counter = 0; counter < 10; counter++) // цикл для суммирования чисел массива sum += array1; // суммируем элементы массива cout << "}\nsum = " << sum << endl; system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// array_sum.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main(int argc, char* argv) { int array1; // объявляем целочисленный массив cout << "Enter elementi massiva: " << endl; int sum = 0; for (int counter = 0; counter < 10; counter++) // цикл для считывания чисел cin >> array1; // считываем вводимые с клавиатуры числа cout << "array1 = {"; for (int counter = 0; counter < 10; counter++) // цикл для вывода элементов массива cout << array1 << " "; // выводим элементы массива на стандартное устройство вывода for (int counter = 0; counter < 10; counter++) // цикл для суммирования чисел массива sum += array1; // суммируем элементы массива cout << "}\nsum = " << sum << endl; return 0; }

Перед тем как выполнять обработку массива его необходимо объявить, причём размер одномерного массива равен 10, так как это оговорено условием задачи. В переменной sum будем накапливать сумму элементов одномерного массива. Первый цикл for заполняет объявленный одномерный массив, введёнными с клавиатуры числами, строки 12 — 13 . Переменная счётчик counter используется для последовательного доступа к элементам одномерного массива array1 , начиная с индекса 0 и до 9-го включительно. Второй цикл for выводит на экран элементы массива, строки 15 — 16 . Третий цикл for последовательно считывает элементы одномерного массива и суммирует их, сумма накапливается в переменной sum , строки 17 — 18 . Результат работы программы смотреть на рисунке 3.

Enter elementi massiva: 0 1 2 3 4 5 6 7 8 9 array1 = {0 1 2 3 4 5 6 7 8 9 } sum = 45 Для продолжения нажмите любую клавишу. . .

Рисунок 3 — Массивы в С++

Сначала последовательно были введены все 10 чисел, после чего отобразился одномерный массив, и напечаталась сумма чисел массива.

Двумерные массивы в С++

До этого момента мы рассматривали одномерные массивы, которыми не всегда можно ограничиться. Допустим, необходимо обработать некоторые данные из таблицы. В таблице есть две характеристики: количество строк и количество столбцов. Также и в двумерном массиве, кроме количества элементов массива, есть такие характеристики как, количество строк и количество столбцов двумерного массива. То есть, визуально, двумерный массив — это обычная таблица, со строками и столбцами. Фактически двумерный массив — это одномерный массив одномерных массивов. Структура двумерного массива, с именем a , размером m на n показана ниже (см. Рисунок 4).

Рисунок 4 — Массивы в С++

где, m — количество строк двумерного массива;
n — количество столбцов двумерного массива;
m * n — количество элементов массива.

// синтаксис объявления двумерного массива /*тип данных*/ /*имя массива*/;

В объявлении двумерного массива, также как и в объявлении одномерного массива, первым делом, нужно указать:

  • тип данных;
  • имя массива.

После чего, в первых квадратных скобочках указывается количество строк двумерного массива, во вторых квадратных скобочках — количество столбцов двумерного массива. Двумерный массив визуально отличается от одномерного второй парой квадратных скобочек. Рассмотрим пример объявления двумерного массива. Допустим нам необходимо объявить двумерный массив, с количеством элементов, равным 15. В таком случае двумерный массив может иметь три строки и пять столбцов или пять строк и три столбца.

// пример объявление двумерного массива: int a;

  • a — имя целочисленного массива
  • число в первых квадратных скобках указывает количество строк двумерного массива, в данном случае их 5;
  • число во вторых квадратных скобках указывает количество столбцов двумерного массива, в данном случае их 3.

// инициализация двумерного массива: int a = { {4, 7, 8}, {9, 66, -1}, {5, -5, 0}, {3, -3, 30}, {1, 1, 1} };

В данном массиве 5 строк, 3 столбца. после знака присвоить ставятся общие фигурные скобочки, внутри которых ставится столько пар фигурных скобочек, сколько должно быть строк в двумерном массиве, причём эти скобочки разделяются запятыми. В каждой паре фигурных скобочек записывать через запятую элементы двумерного массива. Во всех фигурных скобочках количество элементов должно совпадать. Так как в массиве пять строк, то и внутренних пар скобочек тоже пять. Во внутренних скобочках записаны по три элемента, так как количество столбцов — три. Графически наш массив будет выглядеть, как двумерная таблица (см. Рисунок 5).

Рисунок 5 — Массивы в С++

В каждой ячейке двумерного массива a показано значение, в нижнем правом углу показан адрес данной ячейки. Адресом ячейки двумерного массива является имя массива, номер строки и номер столбца.

Разработаем несложную программу, на обработку двумерного массива, которая называется «Лабиринт». Лабиринт должен быть построен на основе двумерного массива. Размер лабиринта выберем на свое усмотрение.

// array2.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include < 33; i++) //переключение по строкам { for (int j = 0; j < 20; j++)// переключение по столбцам if (mas[i][j] == 1) { // вывести два раза символ (номер которого 176 в таблице аски) в консоль cout << static_cast(176); cout << static_cast(176); } else cout << " "; // вывести два пробела cout << endl; } system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// array2.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main(int argc, char* argv) { // 1-условно "стенки лабиринта" // 2-"правильный путь, выход из лабиринта" // 0-"ложный путь" int mas = { {1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,}, // инициализация двумерного массива {1,2,1,0,0,1,0,1,2,2,2,1,1,1,1,0,0,0,0,1,}, {1,2,1,1,0,1,0,1,2,1,2,2,2,2,1,0,1,1,0,1,}, {1,2,2,2,2,2,2,1,2,1,1,1,1,2,1,0,0,1,0,1,}, {1,1,1,1,1,1,2,1,2,1,0,0,1,2,1,1,0,1,0,1,}, {1,0,0,1,0,0,2,2,2,1,1,0,0,2,0,0,0,1,0,1,}, {1,0,1,1,0,1,1,1,1,1,0,0,1,2,1,1,1,1,0,1,}, {1,0,0,0,0,0,0,0,0,1,1,1,1,2,1,0,0,0,0,1,}, {1,1,1,1,1,1,0,1,1,1,2,2,2,2,1,0,1,1,1,1,}, {1,1,0,0,0,1,0,0,1,1,2,1,1,1,1,0,0,0,0,1,}, {1,0,0,1,0,0,0,0,0,1,2,2,2,2,1,1,1,1,0,1,}, {1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,0,0,0,0,1,}, {1,2,2,2,2,2,2,2,2,2,2,2,2,2,1,0,1,1,1,1,}, {1,2,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,}, {1,2,1,0,0,0,1,2,2,2,1,0,0,0,0,0,1,1,0,1,}, {1,2,1,1,1,1,1,2,1,2,1,1,1,0,1,0,0,0,0,1,}, {1,2,1,2,2,2,1,2,1,2,2,2,1,1,1,1,1,1,1,1,}, {1,2,1,2,1,2,1,2,1,0,1,2,2,2,2,2,2,2,2,1,}, {1,2,1,2,1,2,1,2,1,0,1,1,1,1,1,1,1,1,2,1,}, {1,2,1,2,1,2,1,2,1,0,0,0,0,0,0,0,0,0,2,1,}, {1,2,1,2,1,2,2,2,1,0,1,1,1,1,1,1,0,1,2,1,}, {1,2,1,2,1,1,1,1,1,0,0,0,1,0,1,0,0,1,2,1,}, {1,2,1,2,2,1,0,0,1,1,1,0,0,0,1,0,1,1,2,1,}, {1,2,1,1,2,1,1,0,0,0,0,0,1,0,1,0,0,1,2,1,}, {1,2,1,1,2,1,0,0,1,1,1,1,1,1,1,1,1,1,2,1,}, {1,2,1,1,2,1,1,0,1,2,2,2,2,2,2,2,2,2,2,1,}, {1,2,1,1,2,1,0,0,1,2,1,1,1,1,1,1,1,1,1,1,}, {1,2,1,1,2,1,0,1,1,2,1,1,1,1,1,1,1,1,2,2,}, {1,2,1,1,2,1,0,0,1,2,1,1,2,2,2,2,2,2,2,1,}, {1,2,1,1,2,1,0,1,1,2,1,1,2,1,1,1,1,1,1,1,}, {1,2,1,1,2,1,0,0,1,2,1,1,2,1,0,0,0,1,0,1,}, {1,2,2,2,2,1,0,1,1,2,2,2,2,0,0,1,0,0,0,1,}, {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,} }; // два цикла - внутренний и внешний, осуществляющие обращение к каждому элементу массива for (int i = 0; i < 33; i++) //переключение по строкам { for (int j = 0; j < 20; j++)// переключение по столбцам if (mas[i][j] == 1) { // вывести два раза символ (номер которого 176 в таблице аски) в консоль cout << static_cast(176); cout << static_cast(176); } else cout << " "; // вывести два пробела cout << endl; } return 0; }

Правильный и ложный пути можно было бы обозначать одной и той же цифрой, например, нулём, но для наглядности правильный путь обозначен цифрой 2. Инициализация массива выполнялась вручную, только для того, что бы упростить программу. Так как в программе выполняется обработка двумерного массива, нужны два цикла, для переключения между элементами двумерного массива. Первый цикл for выполняет переключение между строками двумерного массива. Так как строк в двумерном массиве 33, то и переменная-счетчик i инкрементируется от 0 до 33, строка 46 . Внутри первого цикла стоит цикл for , который переключается между элементами строки двумерного массива. В теле второго цикла for внутри выполняетcя унарная операция преобразования типа данных — static_cast<>() , которая печатает символ , под номером 176. операция преобразования типов данных дублируется для увеличения ширины лабиринта. Результат работы программы (см. Рисунок 6).

Рисунок 6 — Массивы в С++

Описание массива позволяет использовать в программе любой из его элементов. Для обозначения элементов массива в Си используются индексированные переменные.

Индексированная переменная (индексное выражение) – обозначение ячейки для хранения элемента массива. Именуется указанием идентификатора массива и индекса (индексов) элемента.

ü Внимание! Особенность обозначения элементов массива в Си - нумерация индексов от 0, а не от 1. Поэтому индексы в Си на единицу меньше заданных математически. Это обстоятельство должно учитываться в программе, особенно при формировании условия повторения (выхода из) цикла.

Схема распределения памяти для хранения одномерного массива такова:

Длина ячейки для хранения каждого элемента определяется типом массива:

· символьный – 1 байт;

· целочисленный – 2 байта;

· вещественный – 4 байта;

· двойной точности – 8 байт.

Структура обозначения индексированной переменной одномерного массива:

имя[индекс]

Где имя – идентификатор массива;

индекс – операнд целого типа, определяющий номер элемента в ряду других, составляющих массив;

– ограничители индекса.

Например, в описанном ранее массиве D(16) первый элемент обозначается индексным выражением d, второй – d, текущий – d[i], предпоследний – d и последний – d.

При необходимости индекс может задаваться арифметическим выражением. Например, d или d. В любом случае на момент использования переменной индекс должен быть определен (рассчитан) и полученное значение должно укладываться в заданный описателем диапазон.

Рассмотренный пример идентификации элементов массива D применим к любому из описанных одномерных массивов.

Индексированные переменные позволяют осуществить программную реализацию алгоритмов с использованием элементов массивов. При этом для одномерного массива индексированная переменная позволяет определить конкретный адрес каждого элемента.

Адрес любой переменной определяется операцией & . Следовательно, у элемента d адрес – &d, у d[i] – &d[i], т.е. все элементы массива располагаются в оперативной памяти линейно, начиная с адреса &d.



В языке Си идентификатор одномерного массива однозначно определяет адрес его первого элемента. Например, c º &c, d º &d.

Адрес каждого элемента одномерного массива выражается зависимостью имя+индекс (индекс определяет сдвиг элемента относительно первого на указанное им количество элементов). Например, &c[i] (адрес i-го элемента массива С) вычисляется как c+i.

Таким образом, индексное выражение полностью определяет конкретную ячейку хранения соответствующего элемента.