Физические пределы вычислений. Закон мура или есть ли предел мощности компьютера

Разное

О том, что с каждым новым поколением литографического техпроцесса становится всё труднее соответствовать так называемому закону Мура, представители Intel не перестают говорить при первом удобном случае. Удвоение количества транзисторов на единице площади микросхемы, которое до сих пор происходило с завидной регулярностью, в будущем может замедлиться, да и сохранение действия закона Мура требует от производителей всё больших материальных затрат, не говоря уже об инженерных ресурсах.


Как признался на организованной институтом IMEC профильной конференции Майк Мэйберри (Mike Mayberry), возглавляющий в Intel направление исследований в сфере компонентов, участники рынка должны пересмотреть концепцию научных разработок в области литографии, чтобы успешно преодолеть очередные физические барьеры на пути повышения производительности микросхем. Комментарии докладчика зафиксировали коллеги с сайта EE Times .

Будущее полупроводниковой промышленности достаточно чётко прогнозируется до момента освоения 10-нм технологии, как сообщает Майк Мэйберри. Компания Intel при помощи имеющихся и ряда перспективных технологий покорит этот рубеж к 2015 году. Однако, по мере уменьшения технологических норм до 7 нм и ниже, возможность применения кремния в качестве одного из основных строительных материалов для выпуска микросхем уже ставится под вопрос. По мнению Мэйберри, участники рынка должны сообща заняться проблемой поиска новых материалов, причём работа должна вестись по нескольким направлениям сразу. Сейчас же все производители полупроводников с разным успехом используют примерно одни и те же идеи. В будущем такая узкая специализация не позволит своевременно выявить новое перспективное направление, которое и будет взято за основу для развития отрасли.

Не только новые материалы (арсенид галлия или германий), но и новые структуры транзисторов будут активно применяться в попытках поиска решений для продолжения выпуска микросхем с всё более "тонкими" технологическими нормами. Наличие альтернатив – это и хорошо, и плохо. Ни одна компания в одиночку подобный объём работ по изучению всех вариантов развития не осилит, а риски сделать ставку "не на ту лошадь" весьма высоки. Мы уже могли наблюдать, как конкурирующие потребители литографического оборудования взялись дружно финансировать ASML. Это доказывает, что ради решения общих проблем участники рынка могут договариваться. В сфере разработки новых литографических технологий подобная консолидация тоже жизненно необходима, сообщает представитель Intel. Денег в этой сфере достаточно, по мнению Мэйберри, нужно лишь правильно расставлять приоритеты в финансировании.

  • Перевод

Примечание. Дата публикации статьи: 26.12.2015. За прошедшее время некоторые тезисы автора подтвердились реальными фактами, а некоторые оказались ошибочными - прим. пер.

В последние 40 лет мы видели, как скорость компьютеров росла экспоненциально. У сегодняшних CPU тактовая частота в тысячу раз выше, чем у первых персональных компьютеров в начале 1980-х. Объём оперативной памяти на компьютере вырос в десять тысяч раз, а ёмкость жёсткого диска увеличилась более чем в сто тысяч раз. Мы так привыкли к этому непрерывному росту, что почти считаем его законом природы и называем законом Мура. Но есть пределы этому росту, на которые указал и сам Гордон Мур . Мы сейчас приближаемся к физическому пределу, где скорость вычислений ограничена размером атома и скоростью света.

Канонические часы Тик-так от Intel начали пропускать такты то здесь, то там. Каждый «тик» соответствует уменьшению размера транзисторов, а каждый «так» - улучшение микроархитектуры. Нынешнее поколение процессоров под названием Skylake - это «так» с 14-нанометровым технологическим процессом. Логически, следующим должен стать «тик» с 10-нанометровым техпроцессом, но Intel теперь выдаёт «циклы обновления» после каждого «так». Следующий процессор, анонсированный на 2016 год, станет обновлением Skylake, всё ещё на 14-нанометровом техпроцессе . Замедление часов Тик-так - это физическая необходимость, потому что мы приближаемся к лимиту, где размер транзистора составляет всего несколько атомов (размер атома кремния - 0,2 нанометра).

Другое физическое ограничение - это скорость передачи данных, которая не может превышать скорость света. Требуется несколько тактовых циклов, чтобы данные попали из одного конца CPU в другой конец. По мере того как микросхемы становятся крупнее с большим и большим количеством транзисторов, скорость начинает ограничиваться самой передачей данных на микросхеме.

Технологические ограничения - не единственная вещь, которая замедляет эволюцию процессоров. Другим фактором является ослабление рыночной конкуренции. Крупнейший конкурент Intel, компания AMD, сейчас больше внимания уделяет тому, что она называет APU (Accelerated Processing Units), то есть процессорам меньшего размера с интегрированной графикой для мини-ПК, планшетов и других ультра-мобильных устройств. Intel теперь завладела подавляющей долей рынка процессоров для высококлассных ПК и серверов. Свирепая конкуренция между Intel и AMD, которая несколько десятилетий толкала вперёд развитие процессоров x86, практически исчезла.

Рост компьютерной мощи в последние годы идёт не столько от увеличения скорости вычислений, сколько от усиления параллелизма. В современных микропроцессорах используется три типа параллелизма:

  1. Одновременное выполнение нескольких команд с изменением их очерёдности.
  2. Операции Single-Operation-Multiple-Data (SIMD) в векторных регистрах.
  3. Несколько ядер CPU на одной микросхеме.
У этих типов параллелизма нет теоретических лимитов, но есть реальные практические. Выполнение команд с изменением их очерёдности ограничено количеством независимых команд в программном коде. Вы не можете одновременно выполнить две команды, если вторая команда ждёт результат выполнения первой. Нынешние CPU обычно могут одновременно выполнять четыре команды. Увеличение этого количества не принесёт много пользы, потому что процессору будет сложно или невозможно найти в коде больше независимых команд, которые можно выполнить одновременно.

В нынешних процессорах с набором инструкций AVX2 есть 16 векторных регистров по 256 бит. Грядущий набор инструкций AVX-512 даст нам 32 регистра по 512 бит, и вполне можно ожидать в будущем расширения на 1024- или 2048-битные векторы. Но эти увеличения векторных регистров будут давать всё меньший эффект. Немногие вычислительные задачи имеют достаточный встроенный параллелизм, чтобы извлечь выгоду из этих векторов большего размера. 512-битные векторные регистры соединяются набором регистров маски, у которых ограничение на размер 64 бита. 2048-битные векторные регистры смогут хранить 64 числа одинарной точности по 32 бита каждое. Можно предположить, что Intel не планирует делать векторные регистры более чем 2048 бита, поскольку они превзойдут ограничения 64-битных регистров маски.

Многочисленные ядра CPU дают преимущество только если имеется множество критических к скорости одновременно работающих программ или если задача делится на многочисленные независимые потоки. Количество потоков, на которые можно с выгодой разделить задачу, всегда ограничено.

Производители без сомнения постараются делать всё более и более мощные компьютеры, но какова вероятность, что эту компьютерная мощь можно будет использовать на практике?

Существует четвёртая возможность параллелизма, которая пока не используется. В программах обычно полно веток if-else, так что если CPU научатся предсказывать, какая из веток сработает, то можно было бы поставить её на выполнение. Можно выполнять одновременно сразу несколько веток кода, чтобы избежать потери времени, если предсказание окажется неправильным. Конечно, за это придётся заплатить повышенным энергопотреблением.

Другое возможное улучшение - разместить программируемое логическое устройство на микросхеме процессора. Подобная комбинация сейчас является обычным делом для так называемых FPGA, которые используются в продвинутой аппаратуре. Такие программируемые логические устройства в персональных компьютерах можно использовать для реализации функций, специфических для конкретных приложений, для задач вроде обработки изображений, шифрования, сжатия данных и нейросетей.

Полупроводниковая индустрия экспериментирует с материалами, которые можно использовать вместо кремния. Некоторые полупроводниковые материалы III-V способны работать на более низком напряжении и на более высоких частотах, чем кремний , но они не делают атомы меньше или свет медленнее. Физические ограничения по-прежнему в силе.

Когда-нибудь мы можем увидеть трёхмерные многослойные чипы. Это позволит уплотнить схемы, уменьшить расстояния, а следовательно, и задержки. Но как эффективно охлаждать такой чип, когда энергия распространяется повсюду внутри него? Потребуются новые технологии охлаждения. Микросхема не сможет передавать питание на все схемы одновременно без перегрева. Ей придётся держать отключенными большинство своих частей основную часть времени и подавать питание в каждую часть только во время её использования.

В последние годы скорость CPU увеличивается быстрее, чем скорость RAM, которая часто становится серьёзным узким местом. Без сомнения, в будущем мы увидим много попыток увеличить скорость оперативной памяти. Вероятной разработкой будет поместить оперативную память на одну микросхему с CPU (или хотя бы в один корпус), чтобы уменьшить расстояние для передачи данных. Это будет полезное использование трёхмерных чипов. Вероятно, RAM будет статического типа, то есть на каждую ячейку памяти будет подаваться питание только когда к ней осуществляется доступ.

Intel также снабжает рынок суперкомпьютеров для научного использования. У процессора Knight"s Corner - до 61 ядра на одной микросхеме. Он имеет слабое соотношение производительность/цена, но его ожидаемый наследник Knight"s Landing должен быть лучше по этому показателю. Он вместит до 72 ядер на чипе и сможет выполнять команды с изменением их очерёдности. Это маленький нишевый рынок, но Intel может повысить свой авторитет.

Сейчас лучшие возможности по улучшению производительности, как я думаю, с программной стороны. Разработчики ПО быстро нашли применение экспоненциальному росту производительности современных компьютеров, который произошёл благодаря закону Мура. Программная индустрия стала использовать её, а также начала использовать более и более продвинутые инструменты разработки и программные фреймворки. Эти высокоуровневые инструменты разработки и фреймворки сделали возможным ускорить разработку ПО, но за счёт потребления большего количества вычислительных ресурсов конечным продуктом. Многие из сегодняшних программ довольно расточительны в своём чрезмерном потреблении аппаратной вычислительной мощности.

На протяжении многих лет мы наблюдали симбиоз между аппаратной и программной индустриями, где последняя производила всё более продвинутые и ресурсоёмкие продукты, которые подталкивали пользователей покупать всё более мощное оборудование. Поскольку скорость роста аппаратных технологий замедлилась, а пользователи перешли на маленькие портативные устройства, где ёмкость батареи важнее, чем производительность, программной индустрии теперь придётся изменить курс. Ей придётся урезать ресурсоёмкие инструменты разработки и многоуровневый софт и разрабатывать программы, не так набитые функциями. Сроки разработки увеличатся, но программы станут потреблять меньше аппаратных ресурсов и быстрее работать на маленьких портативных устройствах с ограниченным ресурсом батареи. Если индустрия коммерческого ПО сейчас не изменит курс, то может уступить долю рынка более аскетичным продуктам open source.

Многие энтузиасты компьютерных технологий со стажем помнят времена, когда частоты процессоров измерялись в мегагерцах, и производители (то есть Intel и AMD) старались опередить друг друга по этому показателю. Затем уровень энергопотребления и теплоотдача процессоров выросли настолько, что продолжать эту гонку стало невозможным. В последние годы начали наращивать количество процессорных ядер, но в результате был достигнут предел, когда этот рост стал невыгоден. Теперь получение наибольшей мощности на Ватт стало главным фактором производительности.

Все эти изменения произошли не потому, что разработчики столкнулись с физическими пределами дальнейшего развития существующих процессоров. Скорее, производительность оказалась ограничена тем фактом, что прогресс в некоторых областях — в первую очередь энергоэффективности — был медленнее прогресса в других сферах, вроде расширения функциональных возможностей и наборов команд. Однако может ли быть так, что теперь физический предел процессоров и их вычислительной мощности уже близок? Игорь Марков из Университета Мичигана рассмотрел этот вопрос в статье в журнале Nature.

Рассматриваем преграды

Марков отмечает, что, основываясь на чисто физических ограничениях, некоторые учёные подсчитали, что закона Мура хватит ещё на сотни лет. С другой стороны, группа International Technology Roadmap for Semiconductors (ITRS) даёт ему пару десятилетий жизни. Впрочем, прогнозы ITRS можно ставить под сомнение: раньше эта группа предсказывала процессоры с частотой 10 ГГц во времена чипов Core2. Причина этого расхождения состоит в том, что многие жёсткие физические ограничения так и не вступили в игру.

Например, крайний предел размера функционального блока — один атом, что представляет собой конечный физический предел. Но задолго до того, как получится достичь этого предела, физика ограничивает возможность точно контролировать поток электронов. Другими словами, схемы потенциально могут достичь толщины одного атома, но их поведение значительно раньше станет ненадёжным. Большая часть текущей работы Intel по переходу на более тонкие технологические процессы (меньшие транзисторы) состоит в выяснении того, как структурировать отдельные компоненты, чтобы они могли продолжают функционировать как положено.

Суть аргумента Маркова можно понять примерно так: хотя существуют жёсткие физические пределы, они часто не имеют отношения к проблемам, сдерживающим современный полупроводниковый прогресс. Вместо этого, мы сталкиваемся с более мягкими ограничениями, которые зачастую можно обойти. «Когда наступает момент определённого препятствующего прогрессу ограничения, понимание его природы является ключом к его преодолению», пишет он. «Некоторые ограничения можно просто проигнорировать, в то время как другие остаются гипотетическими и основаны только на эмпирических данных; их трудно установить с высокой степенью определённости».

В результате то, что кажется преградами развития, часто преодолевается сочетанием творческого мышления и усовершенствованной технологии. Пример Маркова — дифракционный предел. Первоначально он должен был удержать лазеры на основе аргона-фтора от травления любых структур тоньше 65 нанометров. Но с помощью субволновой дифракции мы в настоящее время работаем над 14 нм структурами, используя этот же лазер.

Где находятся современные пределы?

Марков уделяет внимание двум вопросам, которые считает крупнейшими пределами: энергетика и связь. Вопрос энергопотребления происходит из того, что количество энергии, используемой современными цепями, не сокращается пропорционально уменьшению их физических размеров. Основной результат этого: усилия, сделанные с целью блокировать части чипа в те моменты, когда они не задействованы. Но с нынешними темпами развития данного подхода в каждый конкретный момент времени неактивной является большая часть чипа — отсюда происходит термин «тёмный кремний».

Использование энергии пропорционально рабочему напряжению чипа, а транзисторы просто не могут работать ниже уровня 200 мВ. Сейчас их напряжение в 5 раз выше, так что тут есть простор для снижения. Но прогресс в уменьшении рабочего напряжения замедлился, так что мы снова может прийти к технологическим ограничениям раньше, чем к физическим.

Проблема использования энергии связана с вопросом коммуникации: большая часть физического объёма чипа и большая часть его энергопотребления расходуется на взаимодействие между разными его блоками или остальной частью компьютера. Здесь мы действительно добираемся до физических пределов. Даже если сигналы в чипе двигались бы со скоростью света, чип на частоте выше 5 ГГц не сможет передавать информацию с одной стороны чипа к другому. Лучшее, что мы можем сделать с учётом современных технологий, это попытаться разработать чипы, в которых часто обменивающиеся друг с другом данными блоки были бы физически близко расположены. Включение в уравнение третьего измерения (то есть трёхмерные цепи) могло бы помочь, но лишь незначительно.

Что дальше?

Марков не особенно оптимистичен относительно грядущих изменений. В ближайшей перспективе он ожидает, что использование углеродных нанотрубок для проводки и оптических межсоединений для связи продолжит тенденцию, помогающую нам избежать столкновения с физическими пределами. Однако он отмечает, что обе эти технологии имеют свои собственные ограничения. Углеродные нанотрубки могут быть небольшими, до нанометра в диаметре, но предел размера есть и у них. И фотоны, если они будут использоваться для связи, потребуют аппаратного обеспечения и энергии.

Многие возлагают надежды на квантовые компьютеры, но Марков не один из их поклонников. «Квантовые компьютеры, как цифровые, так и аналоговые, вселяют надежду только в нишевых приложениях и не предлагают значительной производительности в сфере вычислений общего назначения, поскольку не могут быстро выполнять сортировку и другие специфические задачи», утверждает он. Проблема также в том, что это оборудование лучше всего работает при близкой к абсолютному нулю температуре, при комнатной же производительность крайне низкая.

Однако все вычисления в той или иной степени полагаются на квантовые эффекты, и Марков считает, что кое-что полезное из квантовых систем извлечь можно. «Отдельные квантовые устройства приближаются к энергетическим пределам для коммутации, тогда как неквантовые устройства остаются на порядок позади». Очевидно, что получение даже небольшой степени эффективности квантовых систем может сделать большой задел в расходе энергии в пределах всего чипа.

Другой физический предел по Маркову: стирание бита информации имеет термодинамическую стоимость, которую нельзя избежать — вычисления всегда расходуют энергию. Одна из идей для того, чтобы избежать этого предела — «обратимые вычисления», когда компоненты возвращаются в исходное состояние после расчёта. Этот способ может, по крайней мере в теории, позволить получить обратно часть использованной энергии.

Идея эта не является полностью теоретической. Марков цитирует работы с использованием сверхпроводящих цепей (которые он называет «весьма экзотическими»), обеспечивающих обратимое поведение и рассеивание энергии ниже термодинамического предела. Конечно, здесь применяется всего 4 микрокельвина, так что больше энергии тратиться на проверку работоспособности цепей, чем на саму их работу.

За пределами физики

В то время как физика и материаловедение ставят множество ограничений на аппаратную составляющую, математика накладывает ограничения на то, что мы можем с ними сделать. И несмотря на свою репутацию точной науки, математические ограничения намного более расплывчатые, чем физические. Например, до сих пор нет ответа на равенство классов сложности P и NP, несмотря на годы усилий. И хотя мы можем доказать, что некоторые алгоритмы являются наиболее эффективными для общих случаев, легко найти также диапазоны проблем, где альтернативные вычислительные подходы работают лучше.

Самая большая проблема, которую здесь видит Марков, это борьба за извлечение из кода большего параллелизма. Даже дешёвые смартфоны теперь работают на многоядерных процессорах, но до сих пор их использование не оптимально.

В целом складывается впечатление, что главным ограничением является человеческий разум. Хотя Марков не видит на подходе новых фантастических технологий, он оптимистично надеется на устранение текущих препятствий или их обход за счёт прогресса в других областях.

Вспомните, каким был ваш первый компьютер и сравните его со нынешним. Почему каждый следующий смартфон или компьютер получается более мощным и компактным, чем предыдущий? Ответ на этот вопрос вы найдёте в законе Мура, который гласит: «Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца!». Готовы поспорить, что об этом законе многие слышат впервые и к тому же, совсем не понимают, о чём идёт речь. Между тем, он отметил свой 50-летний юбилей. И эти полстолетия электроника развивалась строго в соответствии с ним. Но будет ли так всегда?

Наблюдение, ставшее законом

Закон Мура известен любому, кто имеет отношение к производству микропроцессоров, разбирается в микроэлектронике и микросхемах или хорошо понимает, как устроен компьютер.Чтобы смысл закона Мура стала понятен и вам, мы сформулируем его по-другому, используя простые и понятные слова: Вычислительная мощность и производительность компьютера удваивается каждые 24 месяца.

Действительно, персональные , ноутбуки, смартфоны очень быстро устаревают. Вы, наверное, замечали: не успел купить новую модель, через некоторое время появляются более мощные, более быстрые, с большим объёмом памяти. При этом их цена остаётся прежней, а если повышается, то не на много. И все это благодаря развитию технологий.

Гордон Мур – один из тех, кто в 1968 году основал корпорацию Intel. В течение первых семи лет был исполнительным вице-президентом корпорации. Затем президентом и главным управляющим Intel. До 1997 года занимал пост председателя совета директоров. Ныне 87-летний Гордон Мур является почётным председателем совета директоров корпорации Intel и проживает на Гавайях.

Свой закон Гордон Мур вывел на основе наблюдений, а огласил его в 1965 году. Он заметил, что ежегодно стоимость одного транзистора уменьшается, а их количество на одном кристалле удваивается. Это объяснялось бурным развитием микроэлектроники и растущими потребностями в более мощных компьютерах. Но через десять лет Гордон Мур внёс в свой закон небольшие изменения: число транзисторов удваивается каждые два года.

Связано это было с тем, что разработка новинок стоит дополнительных денег и их необходимо окупить. Поэтому слишком частый выпуск новых продуктов не даёт компании достаточно времени заработать на них, а слишком редкий выпуск новых продуктов открывал бы дорогу конкурентам. Чтобы компания не осталась в убытках, нужна золотая середина, которую и нащупал Мур.

То, что изначально было интересным наблюдением, впоследствии стало правилом и законом для всей индустрии, которая жила и развивалась по ним все 50 лет. Однако теперь многие эксперты заявляют, что дни «закона Мура» сочтены. Чтобы разобраться, так ли это, нужно стать немножко специалистом. Попробуем?

Как работает транзистор

Итак, интегральная схема (синонимы: микросхема, чип) – это, как бы, мозг любого электронного устройства. Мы не зря использовали слово мозг, ведь у чипа тоже есть своя память и логика. Человеческий мозг получает информацию, перерабатывает, а потом передаёт её другим органам человека. Вернее, это делают нейроны головного мозга при помощи химических и электрических сигналов. Чип, как и мозг, также обрабатывает, хранит и передаёт информацию при помощи электрических сигналов. Но только роль нейронов играют транзисторы. Благодаря транзисторам, чип может выполнять наши команды. Например, банковские карты, удостоверения личности, SIM-карты имеют встроенные чипы, которые хранят разную информацию, обрабатывают её, а также выполняют разные операции.

Таким образом, транзисторы определяют работу всей интегральной схемы, потому что они усиляют, генерируют и преобразовывают электрические сигналы. Другими словами, транзистор – это усилительный элемент. Он позволяет с помощью слабого сигнала управлять гораздо более сильным.

Чтобы было понятно, приведём аналогию. При нажатии педали акселератора (педали газа) увеличивается скорость автомобиля. При этом на педаль нажимать приходится не очень сильно. Мощность нажатия на педаль ничтожна по сравнению с мощностью, которую развивает при этом двигатель. Чем больше угол нажатия на педаль, тем больше открываются специальные клапаны (заслонки в карбюраторе), которые регулируют количество подаваемой топливно-воздушной смеси в двигатель, где она и сгорает, увеличивая давление внутри двигателя. Как следствие, увеличивается частота вращения вала двигателя и скорость движения автомобиля.

То есть, акселератор можно назвать усилительным элементом, который при помощи слабой энергии, затрачиваемой человеком при нажатии на педаль, управляет и преобразовывает более мощную энергию, источником которой является бензин.

В транзисторе всё происходит также. Только через него проходит не бензин, а электрический ток.

Физический предел

Как вы помните, закон Мура есть результат наблюдательности господина Мура, который при его формулировке не задумывался о законах математики и физики. Поэтому, чтобы он работал и далее, нужно, чтобы производители каждые два года умудрялись «впихивать» в чип в два раза больше транзисторов.

К сожалению, этот процесс не может быть бесконечным, и уменьшение размеров транзисторов имеет свой предел. Связано это в первую очередь с физическими ограничениями: невозможно делать элементы бесконечно маленькими. Когда транзистор станет размером в несколько атомов, в силу вступят квантовые взаимодействия. Это означает, что предсказать движение электронов станет просто невозможным,а это сделает транзистор бесполезным.

Но проблемы на этом не закончатся. Чем больше количество транзисторов в чипе, тем больше тепловыделение. Как вы знаете, высокие температуры сильно влияют на проводимость тока, что опять же может сделать транзистор непригодным.

На данный момент самый маленький размер транзисторов – 22 нанометра – в процессоре Intel Haswell (1 нанометр равен одной миллиардной части метра, т. е. 10−9метра). У корпорации Intel ещё имеется потенциал дальнейшего уменьшения размеров транзистора. Так, 10-нанометровые чипы должны появиться на рынке во второй половине 2017 года.

С каждым годом удвоение транзисторов на кристалле уже не делает их дешевле. Иначе говоря, следовать закону Мура уже невыгодно для производителей. Ведь с каждым новым шагом на преодоление физических барьеров начинает уходить больше средств: сложные материалы, суперсовременное оборудование, огромный штат научных сотрудников и при этом – большое количество отбракованных микросхем, ведь при создание супертонкой кристаллической кремниевой пластинки с встроенными в неё микроскопическими транзисторами будет очень чувствительна даже к небольшим, незаметным человеку изменениям, например колебаниям земной коры.

Итак, рано или поздно, законы природы положат конец господству закона Мура. Окончание эры стремительного развития кремниевых транзисторов предсказывают на 2020-2025 годы. Что же ждёт компьютеры дальше? Эксперты предрекают, что появятся 3D- и молекулярные транзисторы, а в более далёкой перспективе – квантовые.

Суперкомпьютеры всегда представлялись особенным классом вычислительной техники. Поскольку строят такие машины для решения задач необычных, то и бюджеты имеют необычные, а это, в свою очередь, давало ощущение бесконечных возможностей: казалось, проблема всегда только в деньгах и, влей ещё десяток–другой миллионов, производительность можно наращивать бесконечно. Случившееся в последние месяцы и годы и выраженное свежим списком 500 самых мощных числогрызов планеты - известным вам TOP500.org - даёт, однако, повод утверждать, что «бесконечность» кончилась. Суперкомпьютеры первыми из современных компьютерных систем ткнулись в физический предел возможностей полупроводниковой электроники - и для них прежде всего необходимо теперь отыскать выход из тупика. Новую технологию компьютинга.

Формальной зацепкой для такого далекоидущего утверждения стала странная закономерность, подмеченная составителями вышеназванного списка. Топ-500 обновляется дважды в год, и в верхних позициях его последней версии, опубликованной на прошлой неделе, изменений почти не произошло (в десятку «лучших» добавился всего один новый участник, да суммарная производительность всех пяти сотен машин немного выросла, с 0,223 до 0,250 эксафлопс). Зато случилась качественная общая перемена: «центр тяжести» списка сместился в верхнюю его часть, или, говоря проще, основная вычислительная мощь теперь сконцентрирована в сравнительно небольшом (исторически - рекордно малом) количестве самых быстрых машин. Выглядит это так: половина кумулятивной мощи Топ-450 обеспечивается всего лишь 17 первыми компьютерами списка. Тренд этот обозначился не вчера, однако за последние шесть лет оформился настолько, что над ним необходимо задуматься.

Единого несомненного объяснения нет. Одно из самых убедительных - финансовое: за последние годы суперкомпьютеры стали сильно дороже (примерно вчетверо, в сравнении, скажем, с числогрызами середины “нулевых”), а потому доступны теперь лишь относительно немногим государственным агентствам и крупным компаниям. Вдобавок конструкторы и покупатели новых не слишком мощных машин не стремятся засветиться в рейтинге, чтобы не портить себе имидж. Так и получается, что чем дальше, тем ярче проявляется тренд: сильные становятся сильней, слабые нелинейно быстро отстают.

Важный вывод: суперкомпьютеры не перестали быть нужными, они лишь стали менее доступными. Но как же неумирающий закон Мура? Разве он не должен компенсировать рост цен более плотной компоновкой и, соответственно, повышением производительности? Вот тут-то и всплывает главное подозрение. Похоже, мы вышли на финишную прямую, где закон Мура хоть ещё и работает, но воспользоваться им уже слишком дорого для большинства игроков.

Результат учёные формулируют так: за неимением прорывных технологий, которые одним скачком обеспечили бы недостижимую ранее скорость вычислений, суперкомпьютерная индустрия вынуждена двигаться по экстенсивному пути - тупо наращивая численность процессоров на своих машинах. И даже хуже того: поскольку такой путь не способен удовлетворить аппетиты пользователей (а числогрызы традиционно не только инструмент для обработки данных, но ещё и способ утвердить корпоративный и национальный авторитет), конструкторы сделали ставку на графические акселераторы, которые, скажем так, пригодны для решения не всяких задач. Численность суперкомпьютеров, активно использующих GPU, выросла за последние пять лет на порядок!

И тут очень кстати вспомнить про готовящуюся замену знаменитого теста Linpack , который с самого начала публикации Топ-500 (двадцать лет назад) служит главным мерилом производительности суперкомпьютерных систем. Заменить его предлагается на недавно разработанный тест HPCG (High Performance Conjugate Gradient). Причина: Linpack - написанный на «Фортране» аж в 1979 году - отражает истинную производительность измеряемых систем неудовлетворительно и расхождение растёт.

Вообще, внятно объяснить отличие Linpack от HPCG не может даже их общий соавтор Джек Донгарра. Но, сильно упрощая, разницу можно свести к следующему: Linpack оценивает главным образом способность суперкомпьютера к чистым вычислениям (что хорошо делают GPU-акселераторы), тогда как HPCG учитывает ещё и важную при решении практических научных и технических задач производительность внутренних коммуникаций (то есть частое нерегулярное обращение к памяти, например).

HPCG если и не заменит, то дополнит Linpack уже через несколько лет «обкатки» (кому интересно, исходники доступны под BSD-лицензией с сайта лабораторий Sandia). И это может привести к значительным перестановкам по всему списку Топ-500, возврату в него мелких участников, которые станут получать более высокие, более справедливые оценки, и даже внесению корректировок в архитектуру суперкомпьютеров, когда их перестанут оптимизировать под Linpack. Хоть на последнее, конечно, особенно надеяться не следует - ведь прорывной технологии компьютинга по-прежнему нет!

А без прорывов в мире числогрызов воцарилась скука. Как построить более мощную машину? Поставить больше процессоров – а значит, найти больше денег. Но реалии таковы, что параллелизация практических задач выше некоторого (и уже достигнутого) уровня не приносит выигрыша в скорости, да и самые мощные суперкомпьютеры уже настолько дороги, что постройка и эксплуатация их по карману единицам, о чём шла речь выше. В результате суперкомпьютерный ручеёк пересыхает. Это конец технологической эры, конец полупроводников в том виде, в каком мы знали их последние пятьдесят лет. И пока не найдётся технологии, способной вывести компьютерную производительность на новый уровень, мы так и будем топтаться на месте, довольствуясь годовым инкрементом в несколько процентов.

Что может обеспечить такой рывок? Западная пресса засматривается на нанотрубки, из которых ребятам в Стэнфорде удалось построить одномерные полярные транзисторы (CNFET), научиться делать микросхемы с гарантированной функциональностью (главная проблема: всё ещё трудно избежать большого числа неправильно уложенных нанотрубок) и даже построить MIPS-совместимый компьютер, продемонстрированный как раз на прошлой неделе, на суперкомпьютерной конференции ACM/IEEE SC13 («Компьютерра» писала об этом проекте: см. « »). В перспективе эта технология способна дать 13-кратное превосходство в производительности на единицу энергопотребления к полупроводниковым чипам. Интересно, занимается ли нанотрубками кто-то у нас?